Original Russian Text Copyright © 2001 by Knizhnikov, Azizbekyan, Kuvaeva, Maier.

Titanocene Aminocylates

V. A. Knizhnikov, O. P. Azizbekyan, Z. I. Kuvaeva, and N. A. Maier

Institute of Physical Organic Chemistry, Academy of Sciences of Belarus, Minsk, Belarus

Received December 23, 1999

Abstract—Dicyclopentadienyldithienyltitanium $(C_5H_5)_2\text{Ti}(C_4H_3S)_2$ was reacted with valine, leucine, and isoleucine hydrochlorides to obtain the corresponding titanocene aminoacylates $(C_5H_5)_2\text{Ti}[OCOCH(NH_3Cl)R]_2$.

Earlier we showed that the cleavage of titanium—carbon σ bonds in dicyclopentadienyldithienyltitanium $(\pi\text{-}C_5H_5)_2\text{Ti}(\alpha\text{-}C_4H_3\text{S})_2$ and dicyclopentadienylthienyltitanium chloride $(\pi\text{-}C_5H_5)_2\text{Ti}Cl(\alpha\text{-}C_4H_3\text{S})$ under the action of carboxylic acids, phenols, or β -diketones provides a convenient synthetic route to titanocene and chlorotitanocene acylates and phenolates $(C_5H_5)_2\text{Ti}(OCOR)_2$ [1], $(C_5H_5)_2\text{Ti}Cl(OCOR)$ [2], $(C_5H_5)_2\text{Ti}(OAr)_2$, and $(C_5H_5)_2\text{Ti}Cl(OAr)$ [3], as well as chlorotitanocene β -diketonates $(C_5H_5)_2\text{Ti}Cl(RCOCHCOR')$ [4]. In the present work we studied utility of this approach for synthesis of titanocene aminoacylates.

It was found that dicyclopentadienyldithienyltitanium fails to react with valine, leucine, and isoleucine. Even after 40-h stirring in benzene at $40\text{--}50^{\circ}\text{C}$ the reaction mixtures still contained intact starting materials. When dicyclopentadienyldithienyltitanium was reacted with valine, leucine, and isoleucine hydrochlorides, we observed cleavage of titanium–carbon σ bonds to give the corresponding titanocene aminoacylates. The reactions could be brought to completion by 5–6-stirring in benzene at $40\text{--}55^{\circ}\text{C}$.

Compounds **I–III** are solid colored substances soluble in polar organic solvents. Their structures were proved by the ¹H NMR and IR spectra and the elemental analyses. Some physicochemical characteristics of the products are listed in Table 1 and their ¹H NMR spectra, in Table 2.

$$R = -CH CH_{3} (I), -CH_{2} CH_{3} (II), -CH_{2} CH_{3} (II), -CH_{2} CH_{3} (II)$$

Compounds **I** and **II** were studied by mass spectrometry. The mass spectra lack molecular ion peaks. The highest m/e peaks belong to $[M - HCl]^+$ ions. Further fragmentation involves loss by the metal atom of its ligand environment. The mass spectra also show peaks due to ions formed by CO_2 expulsion. Principal peaks and their relative intensities are listed in Table 3.

EXPERIMENTAL

The IR spectra were recorded on a UR-20 spectrophotometer for KBr pellets. The ¹H NMR spectra were obtained on a Tesla BS-567A spectrometer for CDCl₃ solutions, reference TMS. The mass spectra were measured on an MKh-1320 instrument at 35 eV. All operations were performed under argon in dry solvents.

Table 1. Physicochemical characteristics of titanocene aminoacylates I–III

Comp.	Yield, %	mp, °C	ν(CO), cm ⁻¹	Found, %			Formula	Calculated, %				
				С	Н	Cl	N	Formula	С	Н	Cl	N
I	75	183–186	1660, 1305	53.01	7.26	15.60	6.09	$C_{20}H_{32}Cl_2N_2O_4Ti$	53.23	7.15	15.71	6.21
II	77		1670, 1300					$C_{22}H_{36}Cl_2N_2O_4Ti$				5.84
III	71	170–172	1665, 1310	55.41	7.63	14.50	5.69	$C_{22}H_{36}Cl_2N_2O_4Ti$	55.13	7.57	14.79	5.84

Comp.	C ₅ H ₅	NH ₃	СН3	СН	CH ₂
I	6.70 s (10H)	8.80 s (6H)	1.20 d (6H) 1.34 d (6H)	2.64 m (2H) 3.75 m (2H)	_
II	6.71 s (10H)	8.79 s (6H)	1.05 t (6H) 1.30 d (6H)	2.27 m (2H) 3.84 m (2H)	1.58 m (4H)
III	6.70 s (10H)	8.82 s (6H)	1.04 d (12H)	2.18 m (2H) 3.85 m (2H)	1.93 d.d (4H)

Table 2. ¹H NMR spectra of titanocene aminoacylates **I–III**, δ , ppm

Table 3. Mass spectra of compounds I and II

Ion	m/e	I _{rel} , %	Ion	m/e	I _{rel} , %
	$(C_5H_5)_2$	Ti[OCOCH(N	$_{\rm IH_3Cl)CH(CH_3)_2]_2}^{\rm II}$	T	
$\mathrm{C}_{20}\mathrm{H}_{31}\mathrm{ClN}_{2}\mathrm{O}_{4}\mathrm{Ti}^{+}$	446	5	$C_9H_{22}Cl_2N_2O_2Ti^+$	308	40
$C_{15}H_{27}Cl_2N_2O_4Ti^+$	417	2	$C_{14}H_{25}N_2O_2Ti^+$	301	21
$C_{20}H_{30}N_2O_4Ti^+$	410	23	$C_{15}H_{20}NO_2Ti^+$	294	70
$C_{19}H_{31}CIN_2O_2Ti^+$	402	8	$C_{10}^{10}H_{20}^{20}N_2O_4Ti^+$	280	12
$C_{15}H_{26}CIN_2O_4Ti^+$	381	40	$C_9H_{21}CIN_2O_2Ti^+$	272	44
$C_{10}H_{22}Cl_2N_2O_4Ti^+$	352	16	$C_{14}H_{20}NTi^{+}$	250	51
$C_{15}H_{25}N_2O_4Ti^+$	345	2	$C_{10}H_{10}Ti^{+}$	178	100
$C_{14}H_{26}CIN_2O_2Ti^+$	337	21	$C_5H_{10}NO_2Ti^+$	164	25
C ₁₅ H ₂₁ ClNO ₂ Ti ⁺	330	7	$C_5H_{11}CINO_2^+$	152	41
$C_{10}H_{21}ClN_2O_4Ti^+$	316	3	$C_5H_5Ti^+$	113	62
	$(C_5H_5)_2Ti[C$	COCH(NH ₃ C	$\text{Cl}(\text{CH}_3)\text{CH}_2\text{CH}_3]_2$ (II)		
$C_{22}H_{35}ClN_2O_4Ti^+$	474	3	$C_{11}H_{26}Cl_2N_2O_2Ti^+$	336	28
$C_{17}^{22}H_{31}Cl_2N_2O_4Ti^+$	445	2	$C_{16}^{11}H_{29}^{20}N_2O_2Ti^{+}$	329	17
$C_{22}H_{34}N_2O_4Ti^{+}$	438	19	$C_{16}^{10}H_{22}^{2}NO_{2}^{2}Ti^{+}$		
$C_{21}^{22}H_{35}CIN_2O_2Ti^+$	430	6	$C_{12}H_{24}N_2O_4Ti^+$	308	51
$C_{17}^{21}H_{30}^{3}ClN_2O_4^2Ti^+$	409	37	$C_{11}^{12}H_{25}^{27}CIN_2O_2Ti^+$	300	35
$C_{12}^{\dagger}H_{26}^{\dagger}Cl_2N_2O_4Ti^+$	380	14	$C_{15}H_{22}NTi^{+}$	264	48
$C_{17}^{12}H_{29}N_2O_4Ti^{+}$	373	1	$C_{10}^{13}H_{10}^{22}Ti^{+}$	178	100
$C_{16}H_{30}CIN_2O_2Ti^+$	365	18	$C_6H_{12}NO_2Ti^+$		
$C_{16}^{10}H_{23}^{3}CINO_2Ti^+$			$C_6^{\dagger}H_{13}^{12}CINO_2^+$	166	40
$C_{12}^{10}H_{25}^{25}CIN_2O_4Ti^+$	344	4	$C_5H_5Ti^+$	113	70

Titanocene aminoacylates. To a solution of 1 mmol of dicyclopentadienyldithienyltitanium in 75 ml of benzene we added 2.1 mmol of correponding amino acid hydrochloride. The reaction mixture was stirred at 50°C for 6 h and filtered. The filtrate was reduced in a vacuum to 20 ml and treated with 70 ml of hexane. The precipitate that formed was separated, washed with ether and pentane, and vacuum-dried. The products were purified by reprecipitation from benzene. The yields and melting points of titanocene aminoacylates are listed in Table 1.

REFERENCES

- 1. Ol'dekop, Yu.A. and Knizhnikov, V.A., *Zh. Obshch. Khim.*, 1982, vol. 52, no. 7, pp. 1571–1575.
- 2. Knizhnikov, V.A. and Ol'dekop, Yu.A., *Izv. Akad. Nauk BSSR, Ser. Khim. Nauk*, 1986, no. 5, pp. 61–65.
- 3. Knizhnikov, V.A. and Ol'dekop, Yu.A., *Zh. Obshch. Khim.*, 1985, vol. 55, no. 7, pp. 1557–1561.
- 4. Knizhnikov, V.A., Shirokii, V.L., Vinokurov, I.I., and Maier, N.A., *Izv. Akad. Navuk Belarusi, Ser. Khim. Navuk*, 1996, no. 2, pp. 117–119.